

# Light and Sound - Grades 3-5

# Option 1 - Making a Spectroscope

# Nebraska Science Standards

5.2.3.b Recognize that light travels in a straight line and can be reflected by an object (mirror) 5.2.3.c Recognize that light can travel through certain materials and not others (transparent, translucent, opaque)

**Objective:** The objective of this activity is to provide hands-on demonstrations that help students to understand the properties of light.

# Materials

Provided by Student:

• Empty paper towel roll

Provided by CSM:

- Prism & Flashlight
- Laser pointer & Mirror
- Making a Spectroscope
  - Craft knife or/scissors (for volunteers to use)
  - o Blank/old CD
  - o Pencil
  - Small piece of cardboard or cardstock
  - o Tape

#### Set up:

- Take ~15 mins to introduce yourself and go through the discussion points below
- Break students into groups and explain the following: do not shine the laser in someone's eyes
- Decide if it is easier to break class into 2 bigger groups (1 for light demo 1 for spectroscope) or to pass around and do spectroscope as a class

#### Discussion:

• Why is it important for scientists to study light?

- Light allows us to see our world and perceive visual information.
- How do light waves travel? What's the difference?
  - Light travels in "energy packets" called photons. Photons look like waves. Light travels in transverse waves. These waves are like ocean waves- they go up and down. The reason why we are able to see is because light bounces off the surface of an object to our eyes.
- What is the difference between reflection and refraction of light?
  - **Reflection** occurs when *light bounces off objects*.
    - If light bounces off a smooth surface, the light will bounce off at equal angles, such as a mirror or water.
  - **Refraction** occurs because *light bends*.
    - Light bends as it passes from one substance to another. Imagine a glass of water with a straw. The straw appears to be bent because the light passes from the air to the water.
- How do we see color?
  - Absorbed light is taken in and not reflected.
    - A red apple appears red because it absorbs all the other colors and reflects red.
    - ROYGBIV --

| 0.0001 nm 0.01 | nm    | 10 nm 1          | 000 nm 0.01 cm | 1 cm        | 1 m   | 100 m |
|----------------|-------|------------------|----------------|-------------|-------|-------|
| Gamma rays     | Xrays | Ultro-<br>violet | Infrared       | Radio waves |       |       |
|                |       |                  |                | Radar       | TV FM | AN    |

- How is a rainbow formed?
  - As light passes through a prism it bends light (refraction) and is reflected back to your eyes as a rainbow. Raindrops act like tiny prisms.
- How fast does light from the sun get to the earth?
  - 499 seconds for light from the sun to travel to earth, which is about 8 minutes and 20 seconds.
- How do we see light?
  - Light passes through the cornea, pupil, and lens before hitting the retina. The iris controls the size of the pupil. In a dark room the iris gets smaller, allowing the pupil to dilate. In a bright room or outside the iris gets bigger, which does not let as much light pass through.
- What speed does light travel?

 186,282 miles per second! That's like running around the entire Earth in 7.5 seconds! In theory, nothing travels faster than light.

#### Activity 1:

\*Ensure students know not to point laser pointer in someones eye -- if it happens the activity will be over\* -- Ensure students take care with slinky so it doesn't get tangled.

#### Purpose of activity:

Students experiment with *refraction*- the bending of light through different mediums and reflection-light bouncing off objects.

#### Procedure:

- 1. Allow the students to play around with the items at the station
- 2. Prism and flashlight can be used to "bend" white light (refraction) and make rainbows
- 3. Laser pointer and mirror can be used to "bounce" the light (reflect) onto another object

### Activity 2: Making a Spectroscope - See the Rainbow:

#### Procedure:

- 1. Use a craft knife (an adult should do this) to cut a thin slit at a 45° angle toward the bottom of the cardboard tube.
- 2. Directly across from the slit, make a small peephole or viewing hole (another step for an adult).
- 3. Trace one end of your paper towel roll onto your small scrap of cardboard. Cut it out.
- 4. Cut a straight slit right across the center of your cardboard circle.
- 5. Tape the circle to the top of your spectroscope.
- 6. Insert the CD into your 45° angled slit with the shiny side facing up.

#### Using the Homemade Spectroscope

Start by taking your spectroscope outside. Point the top slit up at the sky (NOT directly at the sun). Look through the peephole. You will see a rainbow inside!